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Interaction between gravity waves and a shear flow 

By B. A. HUGHES* AND R. W. STEWART 
Institute of Oceanography and Department of Physics, University of 

British Columbia, Vancouver 8, B.C. 

(Received 17 September 1960) 

A series of experiments has been undertaken in which three major properties of 
a surface tension-gravity wave system have been examined. The results of these 
experiments have been compared with existing theories. The three properties are: 
(i) viscous decay in the absence of mean flow, the relevant theory being given in 
Lamb (1932,s  348); (ii) propagation velocities in the presence and absence of flow 
(Lamb 1932, §267),  and (iii) the change of wave energy on crossing a stable 
Couette shear flow. The measurements in the last case were compared with two 
theories, one obtained from the Navier-Stokes equations including terms up to 
second order in wave slope, the other, following previous authors, obtained on 
the assumption that any direct interaction of the waves with the shear flow is 
negligible. According to the theory obtained from the Navier-Stokes equations, 
the divergence of surface wave energy is equal to the rate of change of wave 
energy due to the interaction between the mean flow and the wave system plus the 
rate of change of wave energy due to viscous decay. 

An optical system was used to measure the maximum wave slopes, the wave- 
numbers and the shear velocities. 

Results indicate that an anomalous region of wave properties exists for wave- 
numbers near 2.7 cm-l. For a set of data in which the wave-numbers were always 
less than 1.8 cm-1, it was found that the viscous decay rate and the propagation 
laws agree with theory to within the experimental error, and the interaction 
measurements fit the theory with the non-linear term included rather than the 
traditional theories. 

1. Introduction 
The work discussed herein is an experimental investigation of three major 

properties of deep water surface waves in the regime where both surface tension 
and gravity are important. These properties are: viscous dissipation in the 
absence of any mean flow, propagation laws in the presence and absence of mean 
flow, and the non-linear interaction of waves with a horizontal mean shear. The 
first two of these are treated theoretically in Lamb (1932). The last has been 
investigated theoretically by Longuet-Higgins & Stewart (1961), and in a special 
case by Drent (1959). 

The analysis given by Drent is for the case of plane, long crested waves and a 
rectilinear shear flow in the absence of surface tension and viscosity. The results 
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indicate that there are two major causes of amplitude change as the waves traverse 
the flow: one is due to the refraction of the waves, causing a spreading or con- 
centration of energy; the other is due to the radiation pressure, associated with 
the waves, interacting directly with the shear flow. For waves running directly 
into a converging flow, these two effects are about equal; for waves crossing a 
lateral shear at an angle, the former appears to be two to three times larger than 
the latter. Previous discussions have consistently neglected the direct interaction 
effects (for example, Johnson 1947), which are of the same nature as those treated 
recently by Longuet-Higgins & Stewart (1960, 1961). 

This paper describes a laboratory experiment designed to measure the three 
properties listed above and a comparison of the results with the respective 
theoretical predictions. The wave-energy measurements in the presence of mean 
flow are compared with two theoretical models-one including the interaction 
effects, and the other omitting the interaction effects. 

2. Experimental methods 

All experiments were carried out in a tank specially constructed to produce the 
required shear flow. 

A stable, cylindrical Couette flow was created between the outer wall of a 
circular tank slightly greater than 2.5 m in diameter and an inner wall imposed by 
a raised centre portion 1.52m in diameter (figure 1). A hollow annular ring, 
2-44m in diameter, floating freely, was concentric with and about 2.5 cm radially 
inside the outer wall of the circular tank (figure 1). A series of six drive jets 
situated in the outer wall of the tank were connected by rubber hoses to the water 
mains (figure 1). These jets were oriented so that water passing through them 
impinged on the wall of the annular ring at an angle of 45", thereby making it 
rotate. In  order to keep the annular ring rotating about the centre of the tank, 
three foam-padded castors, spring-mounted, were situated on the wall of the 
tank to bear gently on the outside of the rotating ring if it  were not in the centre of 
the system (figure 1). It was found that if these castors were not used, the ring 
gradually shifted its axis of rotation until it  hit the wall of the tank, creating a 
large disturbance on the surface of the water. It was necessary to construct a 
wooden form to fit snugly around the annular ring in order to hold it to a circular 
shape (figure 1). With the wooden form, the annular ring was circular to within 
0-6 cm in its 2.44m diameter. 

Wave production 
The device used to produce the waves consisted of a wooden truncated circular 
cone 1.9 cm deep with an upper diameter of 15.2 cm tapering to a lower diameter 
of 11.5 cm. It was firmly attached to the cone of a Jensen no. B 69 V elliptical 
loudspeaker. This assembly was situated on the top of the raised centre piece of 
the tank in such a way that excursions of the cone were perpendicular to the 
surface of the water. The cone extended about 1 cm under the surface. 

The loudspeaker was driven by a low-frequency oscillator through a rotating 
switch (for pulse production) and a matching transformer. The voltage applied 
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to the wave-maker was continuously monitored by a single-beam oscilloscope. 
The performance of the oscillator was checked by a precision counter and its 
frequency found to be stable, over the time intervals of interest, to better than 
one part per thousand. The actual frequencies employed were measured either by 
use of a stop-watch or by comparison with the 60-cycle mains. (The mains 
frequency in the power grid to which we are connected, controlled at Boulder 
Dam, is noted for stability and accuracy.) 

Elevation 
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Lighr board 

FIGURE 1. Experimental apparatus. 

As in any experiment with waves, it was necessary to choose between an 
efficient wave absorber and the use of pulse techniques. No simple efficient 
absorber seemed compatible with the other requirements of the experiment, so a 
pulse system was adopted. Pulses of 10 sec duration at  1 min intervals were found 
to be reasonably satisfactory in eliminating disturbances due to reflected waves. 

Two of the prime difficulties of wave production by this method arise from 
lobal pattern asymmetry and transient modulation. Asymmetry occurs because 
of the difficulty of properly orienting the wooden disk with respect to the water. 
It appears that the bottom of the disk should be accurately parallel to the surface 
of the water, and that the motion of the disk should be accurately perpendicular 
to it. Transient modulation occurs because a resonant system is driven by pulses 
of off-resonance frequency, and because an impulsive type of motion is imparted 
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to the surface of the water a t  the start of the pulse. Even though the voltage 
amplitude on the oscilloscope is constant to within 1 % there still is evidence of a 
transient modulation of 2-5 % in the waves themselves. A reduction of the effect 
of this modulation was obtained by averaging the results of amplitude measure- 
ments taken at  a different stage of each of a large number of pulses. 

Measurement of meanJlow 
Measurement of the horizontal shear-flow profiles was performed photographi- 
cally during the experiment in the following way: ten circular pieces of white 
paper 0.6 cm in diameter were simultaneously dropped onto the surface of the 
water in a line approximately a t  right angles to the flow in the area under con- 
sideration. A photograph was taken of these with the camera shutter open for 
0.98 sec (1 sec on camera settings). The lengths of the resulting streaks on the 
film are proportional to the speeds a t  the points where the pieces of paper were 
dropped. This was done ten times in order to achieve a smooth profile. 

Visual observations of the vertical velocity profile were obtained by comparing 
the flow a t  a few cm depth and the flow right on the surface. A small plastic float 
about 4 cm in diameter was attached to a relatively high drag body of about the 
same dimensions by a piece of thread a few cm long. The rate of movement of this 
unit when placed in the water was found to be not significantly different from the 
rate of movement of a plastic float by itself a t  the same radius. There is little 
reason to believe that an appreciable surface stress exists, so any depth-wise 
velocity gradient would be associated with secondary flow. 

Such a secondary flow must of course exist. The stationary bottom of the tank 
must have associated with it an inward-flowing boundary layer. A'compensating 
outward flow is thus required in the upper regions of the flow. If all the vertical 
movement occurs a t  the inner and outer walls of the tank, then in the main body 
of the annulus, solution of the vorticity equation yields for the tangential 
velocity V V = B(r" -r;+lr--l), 

with B and n undetermined constants and r,, the radius of the inner wall. The 
smooth curves shown in figures 2 and 3 were obtained by an empirical fit of 
equation (1)  to the measured points. The velocity values used in the various 
calculations were taken from the theoretical curves (except in figure 3 for a 
distance less than 85 cm for which values were taken from the visually smoothed 
experimental data). 

According to the above assumptions, the speed of the secondary flow is given 
by (n - 1) vjr. With values of n obtained from the empirical fit this appears to be 
of the order of lO-4cm/sec. The strength of the secondary flow was examined 
experimentally by observing the trajectories of the small plastic floats described 
above. These were somewhat irregular, but the trend was towards the outer wall, 
with a rate of radial progression estimated to be of the order of & or less of the 
average tangential flow. 

It should be noted that our results do not depend upon the accuracy of the 
assumptions leading to ( I ) ,  since in practice the equation has been used merely 
as a framework for an empirical description of the mean velocity data. 

(1) 
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Wave measurement 
An optical system was used to measure the wave amplitudes, wave-number and 
wave direction. A board containing 64 light bulbs was fastened to the ceiling so 
that the light from these effective point sources reflected off the area of the shear 

T 105 
85 90 95 100 

Distance from centre of tank (cm) 

FIGURE 2. Velocity profile used for set I data. The ‘theoretical’ curve is obtained from 
equation (1) with empirically chosen constants. 0 ,  Theoretical; 0 ,  measured. 

Distance from centre of tank (cm) 

FIGURE 3. Velocity profile used for set I1 data. - - - - , Smoothed experimental 
data; -, theoretical curve. 

flow to be studied into a properly oriented camera. The lights were in a square 
array each 7.6 cm apart. The board was approximately 3 m vertically above the 
surface of the water and approximately 3 m horizontally from the reflexion points 
on the surface of the water (figure 1) .  The camera used was a 35 mm Agfa Color- 
flex. It was positioned approximately 1 m vertically and horizontally from the 
reflexion points on the water surface, and angled so that the image of the ‘light 
board’ appeared in the centre of its field of view. 
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(i) Amplitude 
As the waves cross the image of the board, the image of a light undergoes 

oscillatory excursions, the maximum of which is a direct measure of the maxi- 
mum wave slope at  the position on the surface of the water from which the 
undeviated light reflects. For each pulse the camera shutter was opened for 
somewhat longer than one wave period. The lengths of the streaks thus obtained 
on each frame are a measure of the maximum excursions of the images of the 
lights. A small alignment mirror, mounted just above the surface of the water 
and to one side of the image of the light board, was oriented to reflect one column 
of lights into the camera thus producing a constant reference line from frame to 
frame. (Examples of these photographs are given in figures 4a and 4b, plate 1.) 
The sensitivity of this technique is such that wave slopes of only 0.01 radians 
could be measured to within 1 yo. The fact that the experimental waves had such 
small slopes justifies the use of first-order wave theory throughout. 

(ii) Wave-number 
The light board also has 23 straight white nylon strings mounted on it, each in 

a vertical plane (figure 1). These strings were photographed using an electronic 
flash unit. (Examples of these photographs are also shown in figures 4c  and 4d ,  
plate 2.) 

As the waves cross the area in question, the images of the strings distort into 
sinusoids. Lines of constant phase were determined from photographs of this 
nature as follows: a photograph was first taken of the strings with no surface waves 
in the area, then photographs were taken when waves were present. When the first 
photograph was projected, the images of the straight strings were traced onto a 
piece of graph paper on the projection board and the images of the lights in the 
alignment mirror were traced out.* Then the photographs with waves were 
projected onto this same piece of graph paper. When the images of the lights in 
the alignment mirror correspond with the traced images, the traces of the straight 
strings form a baseline for each of the sinusoidal string images. The positions at  
which each sinusoidal image crossed its baseline were marked. Joining these 
marks along wave fronts then produced lines of constant phase. 

(iii) Projection system 
In  order to facilitate measurement of the data on the films, a tilted board 

projection system was used with the focal length of the projector the same as the 
focal length of the camera. If the board onto which the film is projected is tilted 
with respect to the projector to the same angle as the surface of the water makes 
with the camera, the measurements obtained correspond directly to the plane of 
the surface of the water, to within a uniform scale factor. 

* Because of the high contrast of the positive, the positions of the lights in the alignment 
mirror are not visible in figures 4 c  and 4d. They could be clearly seen, however, in the 
projected negatives. 
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3. Propagation in the absence of mean flow 
Wave-nwmber 

Assuming irrotationality, incompressibility and infinitesimally small amplitudes, 
the phase velocity C for surface waves can be shown to be (Lamb, 1932, 0 267) 

c = @+y, 
where T is the surface tension and k is the radian wave-number. 

found to be 67 
T was measured by observing the rise in a capillary tube of known bore, and 

For a wave frequency of 8.00 c/s, the predicted wave-number is therefore 

kt = 2.015 & 0.02 cm-I. 

4 dynes/cm. 

Two experimental determinations at this frequency gave 

and 
ke = 2.028 & 0.02 cm-1 

2.033 & 0.02 cm-l. 

It therefore appears that the theory is at least as reliable as the measurements 
(i.e. & 1 %) for small amplitude waves at this frequency. 

Viscous dissipation 
It is shown in Lamb (1932, 0 348) that if the motion in real waves is not signi- 
ficantly different from that in irrotational waves, then the expression for the 
amplitude a of plane waves as a function of time t is 

9 (3) a = a e-2uk2t 
0 

where v is the kinematic viscosity. 

cylindrically expanding waves, this becomes 
In terms of the parameters measured in our experiment, where we have 

6 = Go(s,/s)* exp { - 2vk2(s - so)/Cg), (4) 
where 6 is the wave slope, 

s is the distance from the centre of the wave-maker, and 
C, is the group velocity, which is taken as 

c, = a(kc ) /ak ,  ( 5 )  
where C is given by ( 2 ) .  

In  practice the rate of dissipation of wave energy is changed severely by the 
presence of a surface film of oil or other immiscible surface material. Experience 
showed that the film must be continuous over dimensions comparable with a 
wavelength to be effective. Thus it was found that by slowly siphoning off 
surface water, and with it the surface film, the water could be kept adequately 
clean without requiring many special precautions to prevent contamination. 
The only essential was that the siphon draw off both air and water to ensure that 
the interfacial surface be carried away. 
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Viscosity was not measured. However, an examination of tabulated values 
shows that it is very insensitive to concentrations of solutes as dilute as are found 
in tap-water. The temperature of the surface water was measured and the 
viscosity taken from the Handbook of Chemistry and Physics, 41st ed., Chemical 
Rubber Publishing Co., Cleveland. 

100 

75 

0 Theoretical 

Measured * .  
501 ' I I I I I I 

70 80 90 100 5 2 0 0 k  . 

100 100 70 80 90 

175 

150 

125 

70 80 90 100 

Distance from wave-maker (cm) 

FIGURE 5. Viscous dissipation. 0 ,  Experimental points ; 0- 0, theoretical line. 
(a) f = 10.00 c/s, k = 2.69 em-l; ( b )  f = 8.57 c/s, k = 2.21 cm-l; (c) f = 8.00 cis, 
k = 2.02 cm.3 

Figure 5 shows values of 6 observed for frequencies of 8.00,8.57 and 10.00 c/s, 
plotted as a function of s. The solid lines are obtained from equation (4). Since 
there is no preferred assignment to So, the theoretical lines have been made to fit 
the experimental data near the centre of the range. 

The 8.OOc/s data are seen to agree quite well with the theory except for the 
wavy characteristic of the measured points. This waviness is thought to be due 
to the presence of small amounts of reflected energy. 

At 8.57 c/s the agreement is less satisfactory, but the observations cannot be 
said to conflict significantly with the theory. 

The 10.0 c/s data were taken with the aim of measuring the viscous dissipation 
of a wave whose phase velocity is exactly the same as that of a wave twice its 
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frequency. Unfortunately, it  appears that this condition has not been achieved. 
From the photographs used to measure the wave slopes it could be seen that an 
extra wave train was present, but in the distance covered by the measurements 
the phase of this extra wave with respect to the lO-Oc/s wave changed by 90". 
It is thought that the apparently rapid decay over the left side of the graph in 
figure 5 is a combination of two factors. One is the fact that any wave of a 
frequency of 20.0 c/s which has appreciable amplitude that far from the wave- 
maker must have a continuous source of energy as it propagates. The only 
apparent source of energy is a non-linear wave-wave interaction with the 10.0 CIS 
wave. Between any crest of the fundamental and the preceding trough there is 
a region which is undergoing a continual rate of compression by the fluid particle 
velocities. If a part of an extra wave happens to coincide with this region for any 
length of time it will be increased in energy by the same sort of interaction as that 
between waves and a mean shear (Longuet-Higgins & Stewart 1960). The larger 
velocity gradients present in the 20.0 c/s wave result in a much faster decay of 
energy to viscosity; so presumably a balance is achieved between non-linear input 
and viscous decay. The 10.0 c/s wave thus experiences an increased rate of loss of 
energy through the intermediary of the 20.0c/s wave. A phase photograph of 
a wave at  10.5 cis is given in figure 4d,  plate 2, clearly showing the complexity of 
the wave form when the frequency is near 10 c/s. 

The other factor contributing to the anomalous measured decay rate of the 
lO.Oc/s waves is due to the change of phase that occurs between the two wave 
trains. The shape of the parts of the wave from which the light reflexions take 
place can be inferred from the character of the streak density obtained from an 
amplitude photograph. From such an examination it appears that the parts of 
the wave which give the maximum excursions of the reflected light change from 
having a slope more nearly like that of 20.0 CIS to that characteristic of a 10.0 CIS 
saw-tooth wave. 

The peculiarities of waves in the neighbourhood of 10~1s  have been noted 
previously (Wilton 1915, Pierson & Fife 1960). 

4. Wave-shear flow interaction 
Drent's (1959) treatment was for a plane shear flow traversed by waves which 

would be straight-crested in any region where the shear was zero. Our case, 
while not different in principle, is more complex because we have a curved shear 
flow and a point source of waves. 

Wave kinematics 
The direction of phase propagation and the local wave-number are governed by 
two equations. The first is simply an expression of the fact that to an observer 
stationary relative to the wave-maker, the rate of change of phase is constant 
at all positions in the field. Thus 

wo = kC-kVsinq5, (6) 

where wo is the radian frequency at the wave-maker, 
V is the local speed of the current, 
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and 
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$ is the angle between the direction of the local wave front and the 

The second describes the refraction of the wave front. If 7 is a co-ordinate along 
a wave front and a co-ordinate normal to it in the direction of propagation, then 

direction of the current velocity. 

a$ ac a 
a t  a7 87 

(C- Vsin$)- = ---(Vsin$). ( 7 )  

The rather complex relation (2) between C and k, together with the difficult 
semi-empirical form for V, (l) ,  makes analytic treatment of these equations (6) 
and ( 7 )  formidable. However, in practice it was always found possible to work in 
a region where C, k and $ were all nearly independent of 8, the angular co-ordinate 
of a cylindrical co-ordinate system with centre at  the centre of the tank. In  this 
case an iterative successive approximation method permitted ‘phase rays ’, 
defined everywhere by the direction of the vector sum of C and V, to be located 
without undue difficulty. The same calculation gives Ic and $ throughout the field. 

Using the cylindrical co-ordinate system, equation (7) becomes 

alnk 
00s $ - ar a 

a$ a$ sin$ alnk 
ar ae r ar 

cos$--sin$-+- = -sin$-- 

Under the assumption that k and $ are independent of 8, this can be integrated 
to give 

where k, is the wave-number at  the wave-maker and L is the distance from the 
centre of the tank to the wave-maker. From equations (9) and (6), sin$ is 
eliminated, leaving k as a function of r only, 

kr sin $ = k, L, (9) 

kC - w, = k, VLIr. (10) 
Equation (6) can be used to estimate the accuracy of (10) using a$/% as evaluated 
in the absence of flow. This indicates that in the area investigated k is nowhere 
different from that given in (10) by more than 0-5 yo. 

Measurements of wave-number variation were obtained from two independent 
sets of data in the presence of flow: set I with an oscillator frequency of 8.23 CIS 
and a velocity profile as shown in figure 2, set I1 with an oscillator frequency of 
6.00 c/s and a velocity profile as shown in figure 3. 

For set I, a total of 40 wave-number pictures were taken of which 5 were chosen 
and measured. Judgement was based on the visual smoothness of the sinusoidal 
string images. Lack of smoothness results partially from velocity fluctuations and 
predominantly from the presence of any waves of a period different from the 
main component. Equations (6) and (8) indicate that waves of different period 
refract differently, thus the presence of spurious wave periods produces local 
variations along the lines of constant phase. 

For set 11, an attempt was made to take forty photographs but because of a 
faulty camera aperture mechanism only ten usable ones resulted. On the whole, 
these ten were much freer from discrepancies than those of set I so that no 
difficulty was encountered in choosing five frames. 

Figures 6 and 7 contain typical lines of constant phase taken from data from 
two of each of the five frames of sets I and 11, respectively. 
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The theoretical curves shown in figures 8 and 9 were plotted from equation (10) 
and were determined from set I information and set I1 information, respectively. 
The measured points were derived from the wavelengths obtained from the 
respective lines-of-constant-phase diagrams. The values used for the wavelengths 

u 

1 em on water surface 

FIGURE 6. Lines of constant phase-set I 
(8-23 c/s). The circles are the average loca- 
tion of the images of lights used for ampli- 
tude measurement. 

1 em on water surface 

FIGURE 7. Lines of constant phase- 
set I1 (6-00 c/s). 

are the averages, at each position, of the minimum distance from a point on a line 
of constant phase to the nearest lines of the same phase in both directions. In  
order to show the scatter yet not overcrowd the diagrams, only & of all the points, 
chosen randomly, have been shown in each case. Smoothing of the measured 
points in figure 8 was done visually. 

As can be seen from figures 8 and 9, set I1 data agree very well with equation (10) 
whereas set I differs significantly from it. The maximum discrepancy in figure 8 
(approximately 5 yo) occurs a t  k = 2.7 cm-l, and since the wave-number that 
propagates at  the same phase velocity as a wave at twice the wave-number has 
a value of 2.7cm-l, calculated from equation ( Z ) ,  it  is thought that the two 
phenomena are intimately linked, though exactly how is not yet understood. The 
most likely possibility is that the phase velocity in the vicinity of Ic = 2.7 cm-l 
differs from that given by simple theory (equation 2) by approximately 5 %. 

(i) Theory 

in the absence of wave dissipation 

Interaction dynamics 

Longuet-Higgins and Stewart (1961) have shown that for steady currents and 
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where E is wave energy per unit surface area, 
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C, is the local group velocity of the waves, 
U is the horizontal current velocity, of which 
Ui is a component, 
Sij is the (two-dimensional) radiation stress-tensor. 

Horizontal distance across flow (1 unit = 0.36 mm) 

FIGURE 8. Measured and predicted wave-number data-set I (8.23 c/s). 0,  Measured 
points; - - - -, smoothed experimental data; -, theoretical curve. 

. . 

J I I I I I I I I 

100 200 300 400 
Horizontal distance across flow (1 unit = 0.71 mm) 

FIGURE 9. Measured and predicted wave-number data-set I1 (6-00 c/s). 
0,  Measured points; 0,  theoretical curve. 

In  deep water the diagonal form of Sij is 

where the x1 co-ordinate is here directed normal to the wave fronts. 

particular case 
Drent (1959) and Longuet-Higgins & Stewart (1961) analysed (11) for the 

-- aE - - = - -  au2 - u, = 0, 
ax, ax, ax, 

but previous authors (e.g. Johnson, 1947) have neglected the interaction term 
in Sii. 

In  our case (1 1) becomes 

V . [E(C, + V)] = 4E sin 2 4  - - - - viscous term, r: r) 
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where C, is in the direction of advance of the wave and normal to its front, and V is 
tangential to the mean streamline and in the direction of increasing 0. 

The line obtained by integrating from the inner edge of the flow outwards with 
the direction of C, + V, (a function of r and 0) ,  tangent at  every point to the path, 
shall be called a ‘group ray’. A path line defined this way possesses the property 
that no wave energy crosses it. That is, given any two group rays, the rate that 
energy flows across any line joining these rays is the same as the rate that energy 
flows across any other line joining them in the absence of dissipating mechanisms 
and non-linear interactions. Therefore, by considering the configuration of the 
group rays on the water surface, the effect of the refraction and spreading of 
energy can be taken into account. 

We shall assume that the effect of viscosity on the waves, being a purely local 
one, is not influenced by the shear flow and is given by (3) in the form 

where s is the distance from the wave maker here measured along the local group 
ray. 

Equation (13) can be put in a form suitable for numerical iteration by inte- 
grating it over the area contained between two differentially separated group rays 
and any two arbitrary points on the rays 

(15) 
= 111; E sin 24 ( dV dr - T) v dl  ds - viscous terms, 

4 

or A(ElC,+VlO -viscous terms, ZAs 
where 1 is the perpendicular distance separating the two group rays and As is an 
element of length along the group rays. 

The theoretical curves used for comparison with the experimentally determined 
data have been obtained by a numerical integration of equation (16), including 
viscosity, along a previously determined group ray-the interaction curve 
including the term $E sin 24(d V/dr - V/!r), the non-interaction curve omitting it. 

(ii) Results 
For both sets of data, 100 amplitude photographs were taken and the ‘best’ 

twenty in each were measured. The criterion used to judge which frames were 
to be measured was based on overall smoothness of the streak lengths within the 
framebeing judged. (See figures 4aand 4 6, plate 1, for an example ofa photograph 
rejected on this basis compared with one that was not.) The judgement was a 
purely visual one, i.e. it was performed before any of the streak lengths were 
actually measured. These anomalous streak variations are caused by the accumu- 
lative effect of fluctuations in the horizontal velocity that occur during the time 
required for the energy to propagate from the edge of the shear flow to the position 
of examination. The major effect of a local velocity fluctuation is a change of the 
rate of spreading from that point onwards along the group rays affected. 
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To determine the results of the interaction measurements a group ray was 
first plotted along which equation (16) was solved numerically with and without 
the interaction term. The group rays that were used were obtained simply from 
a graphical integration of the equation 

V ae 
- r -  = tan+--Sec$, c, dr 

where C, is obtained from equation (5), assuming (2). The angle + was in all cases 
determined from equation (10) using the measured values of k and V .  The group 
rays so obtained are shown in figures 6 and 7, for set I and 11, respectively. Eight 
wave slopes were then determined for each frame of amplitude photographs 
chosen to be measured-one for each row of lights. If the group ray happens to 
pass between two lights, the value of the slope at the ray was obtained by linear 

0 2  4 6 8 10 12 14 
Distance along group ray (em) 

FIGURE 10. Wave slopes in presence of flow-set I (8.23 c /s ) .  0, Theoretical interaction; 
0,  theoretical non-interaction; +, measured 1 S.E. 

interpolation between the lights. Each frame was then normalized by setting the 
average wave slope along the group ray for each frame to unity. The normalized 
measured values for each point on the group ray were then averaged over all 
twenty frames. The standard errors of each point were then calculated from the 
normalized data. The final averages for set I are shown as the measured points in 
figure 10 with the vertical bars indicating one standard error on each side. 

The theoretical curves plotted in figure 10 were calculated on the basis of 
zeroth-order kinematics-inclusion of first-order effects produced a negligible 
change. They incorporate the smoothed wave-number data of figure 8 in the 
conversion of energy to slope. They also were normalized to unity at the same 
position along the group ray at which the averaged wave slope occurred. It is 
evident that at  large distances along the ray there is a loss of wave energy not 
accountable by the theory. This point will be returned to below. 

The theoretical curves used for set I1 incorporated first-order iterated kine- 
matics. The maximum deviation from zeroth-order theory encountered was 
1.7 yo in wave slope. Figure 11 presents the data obtained in set I1 plotted in the 
same manner as figure 10. Clearly the agreement between theory and experiment 
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is much better than in set I, and the inclusion of the interaction terms seems 
favoured. Figure 12 presents the same data as figure 11 in a somewhat different 
form. The points shown in the upper diagram of figure 12 are the difference 
between the measured points and the normalized theory omitting the inter- 

I I # I 

0 10 20 30 
Distance along group ray (cm) 

FIGURE 11. Wave slopes in presence of flow-set I1 (6.00 c/s). 0, Theoretical 
interaction; 0 ,  theoretical non-interaction; +, measured _t 1 S.E. 
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FIGURE 12. Normalized comparisons of theoretical curves with measured wave slopes- 
set 11. - - - -, Least squares regression through measured points ; +, measured * S.D. error. 

action term. In  the lower diagram of figure 12 the points plotted are this difference 
including the interaction term. In  both cases, the vertical bars indicate one 
standard error on each side of the points, and the dashed straight line was 
obtained by least squares regression through the points. The interaction effect 
resulted in an added energy change of 12 % over the distance examined. As can 
be seen from the lower diagram of figure 12, the experimental data agrees very 
well with the theory (including the interaction term), but it appears likely that 
we have underestimated the standard error somewhat. It should be noted that 
the 12 % change in energy density produced by the interaction effect is to be 
compared with a 30 % change due to spreading. 
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5. Discussion 
The optical methods used in this experiment were entirely satisfactory-it is 

estimated that an accuracy of 0.5 yo was achieved in all the optical measurements. 
The method used to create the shear flow, though extremely simple and 

adequate, possessed one major drawback-unsteadiness. Because of upwelling 
at the inner wall, a region of turbulence existed at the edge of the flow. This region 
produced most of the random variations of wave properties that were subsequently 
dealt with by statistical analysis. 

Considerable time was spent trying to produce waves with very little transient 
modulation. Unfortunately, the problem was not entirely solved. The attempt 
to randomize the phase of the modulation from pulse to  pulse appears to have 
succeeded for set I data but not completely for set 11. 

It appears that a further experimental investigation is warranted into viscous 
dissipation and propagation properties of waves near k = 2.7 cm-1 both in the 
presence and absence of mean flow. 

The interaction measurements as presented in figure 10 are definitely ano- 
malous. The difference in decay rate between the measured points and the 
theoretical curves is in the same sense and of approximately the same magnitude 
as the discrepancies noted in the viscous decay between 8.57 and 10-0 CIS. It is 
perhaps significant that a sudden decay of energy occurs very near the position 
along the group ray, 12 cm, at which k = 2.7 cm-l. 

No anomalies were found in the information taken in set I1 and figures 11 and 
12 clearly indicate that interaction theory is well favoured over non-interaction 
theory. 

This work is a contribution of Defence Research Board of Canada. One of us 
(B. A. H.) was on study leave from the Pacific Naval Laboratory, Esquimalt, the 
other (R. W. S.) assigned by D. R. B. to special duty at the University of British 
Columbia. Equipment was purchased from a D.R.B. research grant. 

We wish to thank the Department of Civil Engineering, University of British 
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(4 
FIGURE 4. (Plates 1 and 2.) (u)  Selectedphotograph for the determination of wave amplitudes 
in the presence of a shear flow (6.00 c is ) .  ( b )  Rejected wave amplitude photograph 
(6.00 c is ) .  (c) Wave-number photograph with shear flow (6.00 c i s ) .  ( d )  Wave-number 
photograph without shear flow (10.5 cis) .  
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